Publication:
A clinical prediction model to identify patients at high risk of death in the emergency department.

cris.virtualsource.author-orcid1faeeeef-6791-474f-9394-bedce1157a32
cris.virtualsource.author-orcida79e2555-0f11-4ca4-a8ca-8dc6f5bdc490
cris.virtualsource.author-orcid79fd88c6-fc00-4b06-8ac4-f9b75210b329
datacite.rightsopen.access
dc.contributor.authorCoslovsky, Michael
dc.contributor.authorTakala, Jukka
dc.contributor.authorExadaktylos, Aristomenis
dc.contributor.authorMartinolli, Luca
dc.contributor.authorMerz, Tobias M
dc.date.accessioned2024-10-23T18:12:14Z
dc.date.available2024-10-23T18:12:14Z
dc.date.issued2015-03-20
dc.description.abstractPURPOSE Rapid assessment and intervention is important for the prognosis of acutely ill patients admitted to the emergency department (ED). The aim of this study was to prospectively develop and validate a model predicting the risk of in-hospital death based on all available information available at the time of ED admission and to compare its discriminative performance with a non-systematic risk estimate by the triaging first health-care provider. METHODS Prospective cohort analysis based on a multivariable logistic regression for the probability of death. RESULTS A total of 8,607 consecutive admissions of 7,680 patients admitted to the ED of a tertiary care hospital were analysed. Most frequent APACHE II diagnostic categories at the time of admission were neurological (2,052, 24 %), trauma (1,522, 18 %), infection categories [1,328, 15 %; including sepsis (357, 4.1 %), severe sepsis (249, 2.9 %), septic shock (27, 0.3 %)], cardiovascular (1,022, 12 %), gastrointestinal (848, 10 %) and respiratory (449, 5 %). The predictors of the final model were age, prolonged capillary refill time, blood pressure, mechanical ventilation, oxygen saturation index, Glasgow coma score and APACHE II diagnostic category. The model showed good discriminative ability, with an area under the receiver operating characteristic curve of 0.92 and good internal validity. The model performed significantly better than non-systematic triaging of the patient. CONCLUSIONS The use of the prediction model can facilitate the identification of ED patients with higher mortality risk. The model performs better than a non-systematic assessment and may facilitate more rapid identification and commencement of treatment of patients at risk of an unfavourable outcome.
dc.description.numberOfPages8
dc.description.sponsorshipUniversitätsklinik für Intensivmedizin
dc.description.sponsorshipUniversitäres Notfallzentrum
dc.description.sponsorshipNotfallzentrum, Chirurgie
dc.identifier.doi10.7892/boris.67016
dc.identifier.pmid25792208
dc.identifier.publisherDOI10.1007/s00134-015-3737-x
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/132076
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofIntensive care medicine
dc.relation.issn0342-4642
dc.relation.organizationDCD5A442BADDE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BA4CE17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleA clinical prediction model to identify patients at high risk of death in the emergency department.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage1036
oaire.citation.issue6
oaire.citation.startPage1029
oaire.citation.volume41
oairecerif.author.affiliationUniversitätsklinik für Intensivmedizin
oairecerif.author.affiliationUniversitäres Notfallzentrum
oairecerif.author.affiliationNotfallzentrum, Chirurgie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId67016
unibe.journal.abbrevTitleINTENS CARE MED
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
art%3A10.1007%2Fs00134-015-3737-x.pdf
Size:
410.77 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc/4.0
Content:
published

Collections