Publication:
A novel bioreactor system capable of simulating the in vivo conditions of synovial joints.

cris.virtualsource.author-orcid209b8f65-b082-408a-aa04-3f029d8bf237
cris.virtualsource.author-orcid0d336d70-f02c-46f7-9a55-6fdf60d11750
datacite.rightsopen.access
dc.contributor.authorTekari, Adel
dc.contributor.authorEgli, Rainer Josef
dc.contributor.authorSchmid, Veit
dc.contributor.authorJustiz, Joern
dc.contributor.authorLuginbühl, Reto
dc.date.accessioned2024-10-05T11:56:51Z
dc.date.available2024-10-05T11:56:51Z
dc.date.issued2020-12
dc.description.abstractAny significant in vitro evaluation of cartilage tissue engineering and cartilage repair strategies has to be performed under the harsh conditions encountered in vivo within synovial joints. To this end, we have developed a novel automated physiological robot reactor system (PRRS) capable of recapitulating complex physiological motions and load patterns within an environment similar to that found in the human knee. The PRRS consists of a mechanical stimulation unit (MSU) and an automatic sample changer (ASC) within an environment control box (ECB) in which the humidity, temperature, and gas composition are tightly regulated. The MSU has three linear (orthogonal) axes and one rotational degree of freedom (around the z-axis). The ASC provides space for up to 24 samples, which can be allocated to individual stimulation patterns. Cell-seeded scaffolds and ex vivo tissue culture systems were established to demonstrate the applicability of the PRRS to the investigation of the effect of load and environmental conditions on engineering and maintenance of articular cartilage in vitro. The bioreactor is a flexible system that has the potential to be applied for culturing connective tissues other than cartilage, such as bone and intervertebral disc tissue, even though the mechanical and environmental parameters are very different.
dc.description.numberOfPages11
dc.description.sponsorshipDepartment for BioMedical Research, Forschungsgruppe Knochenbiologie & Orthopädische Forschung
dc.description.sponsorshipUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
dc.description.sponsorshipDepartment for BioMedical Research (DBMR)
dc.identifier.doi10.48350/149063
dc.identifier.pmid33267725
dc.identifier.publisherDOI10.1089/ten.TEC.2020.0161
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/55743
dc.language.isoen
dc.publisherMary Ann Liebert
dc.relation.ispartofTissue engineering. Part C, Methods
dc.relation.issn1937-3392
dc.relation.organizationDCD5A442BD18E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BB1CE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BC44E17DE0405C82790C4DE2
dc.relation.schoolDCD5A442C27BE17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleA novel bioreactor system capable of simulating the in vivo conditions of synovial joints.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oaire.citation.endPage627
oaire.citation.issue12
oaire.citation.startPage617
oaire.citation.volume26
oairecerif.author.affiliationDepartment for BioMedical Research, Forschungsgruppe Knochenbiologie & Orthopädische Forschung
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
oairecerif.author.affiliationDepartment for BioMedical Research (DBMR)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2020-12-29 16:18:25
unibe.description.ispublishedpub
unibe.eprints.legacyId149063
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 2 of 2
Name:
Egli_A_novel.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
accepted
Name:
ten.tec.2020.0161.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections