Publication:
High-Throughput Glomeruli Analysis of micro-CT Kidney Images Using Tree Priors and Scalable Sparse Computation

cris.virtual.author-orcid0000-0002-5062-1169
cris.virtualsource.author-orcid186ae18e-3904-4a62-b7ea-502edd29f3bb
cris.virtualsource.author-orcid0ac83cd9-63a9-4fa4-b6ef-73c2bcaee553
cris.virtualsource.author-orcid6b9f7e28-8a66-49ee-abac-5a92d89b810b
cris.virtualsource.author-orcid50f55964-7ff8-4bc0-8549-9919a3cbee93
cris.virtualsource.author-orcid906070e9-5f44-4fcf-b26c-5e36f8e66f58
dc.contributor.authorCorrea Shokiche, Carlos
dc.contributor.authorBaumann, Philipp
dc.contributor.authorHlushchuk, Ruslan
dc.contributor.authorDjonov, Valentin Georgiev
dc.contributor.authorReyes Aguirre, Mauricio Antonio
dc.date.accessioned2024-10-25T05:30:13Z
dc.date.available2024-10-25T05:30:13Z
dc.date.issued2016-10-17
dc.description.abstractKidney-related diseases have incrementally become one major cause of death. Glomeruli are the physiological units in the kidney responsible for the blood filtration. Therefore, their statistics including number and volume, directly describe the efficiency and health state of the kidney. Stereology is the current quantification method relying on histological sectioning, sampling and further 2D analysis, being laborious and sample destructive. New micro-Computed Tomography (μCT) imaging protocols resolute structures down to capillary level. However large-scale glomeruli analysis remains challenging due to object identifiability, allotted memory resources and computational time. We present a methodology for high-throughput glomeruli analysis that incorporates physiological apriori information relating the kidney vasculature with estimates of glomeruli counts. We propose an effective sampling strategy that exploits scalable sparse segmentation of kidney regions for refined estimates of both glomeruli count and volume. We evaluated the proposed approach on a database of μCT datasets yielding a comparable segmentation accuracy as an exhaustive supervised learning method. Furthermore we show the ability of the proposed sampling strategy to result in improved estimates of glomeruli counts and volume without requiring a exhaustive segmentation of the μCT image. This approach can potentially be applied to analogous organizations, such as for example the quantification of alveoli in lungs.
dc.description.numberOfPages9
dc.description.sponsorshipInstitut für chirurgische Technologien und Biomechanik (ISTB)
dc.description.sponsorshipOrdinariat für Quantitative Methoden der BWL
dc.description.sponsorshipInstitut für Anatomie
dc.identifier.doi10.7892/boris.97769
dc.identifier.publisherDOI10.1007/978-3-319-46723-8_43
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/151263
dc.language.isoen
dc.publisherSpringer International Publishing
dc.publisher.placeCham
dc.relation.conferenceInternational Conference on Medical Image Computing and Computer-Assisted Intervention
dc.relation.isbn978-3-319-46722-1
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.organizationDCD5A442BCD7E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BCD5E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C3F2E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc000 - Computer science, knowledge & systems
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.titleHigh-Throughput Glomeruli Analysis of micro-CT Kidney Images Using Tree Priors and Scalable Sparse Computation
dc.typeconference_item
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage378
oaire.citation.startPage370
oaire.citation.volume9901
oairecerif.author.affiliationInstitut für chirurgische Technologien und Biomechanik (ISTB)
oairecerif.author.affiliationOrdinariat für Quantitative Methoden der BWL
oairecerif.author.affiliationInstitut für Anatomie
oairecerif.author.affiliationInstitut für Anatomie
oairecerif.author.affiliationInstitut für chirurgische Technologien und Biomechanik (ISTB)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2017-09-15 12:28:16
unibe.description.ispublishedpub
unibe.eprints.legacyId97769
unibe.refereedTRUE
unibe.subtype.conferencepaper

Files

Original bundle
Now showing 1 - 1 of 1
Name:
chp%3A10.1007%2F978-3-319-46723-8_43 (2).pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections