Publication:
The PLATO 2.0 mission

cris.virtual.author-orcid0000-0002-4644-8818
cris.virtualsource.author-orcid475bfbaf-a55c-46d3-9e40-35ed815e4ddf
cris.virtualsource.author-orcid17fb2a77-f417-4cd3-b912-da53f40a88c8
cris.virtualsource.author-orcidff595ad6-9b9f-48ac-b459-a6239badc1ac
datacite.rightsopen.access
dc.contributor.authorHeng, Kevin
dc.contributor.authorAlibert, Yann
dc.contributor.authorBenz, Willy
dc.date.accessioned2024-12-13T15:31:31Z
dc.date.available2024-12-13T15:31:31Z
dc.date.issued2014-09-04
dc.description.abstractPLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
dc.description.noteKollaboration - Es sind nur die Berner Autoren namentlich erwähnt.
dc.description.numberOfPages63
dc.description.sponsorshipCenter for Space and Habitability (CSH)
dc.description.sponsorshipPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
dc.identifier.arxiv1310.0696
dc.identifier.doi10.7892/boris.59262
dc.identifier.publisherDOI10.1007/s10686-014-9383-4
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/192397
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofExperimental astronomy
dc.relation.issn0922-6435
dc.relation.organizationDCD5A442BE9BE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C6F2E17DE0405C82790C4DE2
dc.subject.ddc500 - Science::520 - Astronomy
dc.subject.ddc500 - Science::530 - Physics
dc.subject.ddc600 - Technology::620 - Engineering
dc.titleThe PLATO 2.0 mission
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage330
oaire.citation.issue1-2
oaire.citation.startPage249
oaire.citation.volume38
oairecerif.author.affiliationCenter for Space and Habitability (CSH)
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId59262
unibe.journal.abbrevTitleEXP ASTRON
unibe.refereedfalse
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
PLATO_rauer_2014.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections