Publication:
Deep Learning for Ischemic Penumbra Segmentation from MR Perfusion Maps: Robustness to the Deconvolution Algorithm

cris.virtualsource.author-orcidd66646ec-272b-496e-a567-9fbcdceb0bfa
cris.virtualsource.author-orcid021e77f8-1626-4e6f-aab0-dbda0a39b241
cris.virtualsource.author-orcideb27a92a-8008-4040-98fb-44b2ca5f0ced
cris.virtualsource.author-orcidc504f150-168a-4d60-90bd-e8d6f58540e1
dc.contributor.authorLeuliet, Theo
dc.contributor.authorHuwer, Stefan
dc.contributor.authorMaréchal, Bénédicte
dc.contributor.authorRavano, Veronica
dc.contributor.authorKober, Tobias
dc.contributor.authorRafael-Patiño, Jonathan
dc.contributor.authorKaesmacher, Johannes
dc.contributor.authorWiest, Roland
dc.contributor.authorRichiardi, Jonas
dc.contributor.authorMcKinley, Richard
dc.date.accessioned2025-05-02T13:27:57Z
dc.date.available2025-05-02T13:27:57Z
dc.date.issued2024-12-27
dc.description.abstractDetermining the penumbra, i.e., the at-risk but salvageable tissue, is crucial in the context of acute ischemic stroke imaging. Deep learning methods performing segmentation from perfusion parameter maps have shown promise in this regard. However, these methods rely on the computation of parameter maps via deconvolution algorithms, raising concerns about their generalizability across different medical centers. This study investigates the robustness of segmentation methods given different perfusion processing algorithms for dynamic susceptibility contrast magnetic resonance perfusion imaging. A neural network is first trained on a dataset of 94 patients with paired Tmax maps from a single MR perfusion algorithm, together with manual perfusion deficit segmentations. The network’s outputs are then compared on a second dataset of 268 patients, where Tmax inputs are generated with three different deconvolution algorithms. DICE coefficient along with the difference between estimated perfusion deficit volumes are used to quantify the agreement between predictions. Our findings demonstrate high variability in the predicted penumbra, even when Tmax inputs exhibit high similarity (SSIM > 0.8). This study therefore highlights the importance of exploring deconvolution-free methods to address the robustness issue for learning-based penumbra segmentation.
dc.description.sponsorshipInstitute of Diagnostic and Interventional Neuroradiology
dc.identifier.isbn9783031761591
dc.identifier.isbn9783031761607
dc.identifier.publisherDOI10.1007/978-3-031-76160-7_10
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/210527
dc.language.isoen
dc.publisherSpringer Nature Switzerland
dc.relation.ispartofbookBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.issn0302-9743
dc.relation.issn1611-3349
dc.titleDeep Learning for Ischemic Penumbra Segmentation from MR Perfusion Maps: Robustness to the Deconvolution Algorithm
dc.typeconference_item
dspace.entity.typePublication
oaire.citation.volume14668
oairecerif.author.affiliationInstitute of Diagnostic and Interventional Neuroradiology
oairecerif.author.affiliationInstitute of Diagnostic and Interventional Neuroradiology
oairecerif.author.affiliationInstitute of Diagnostic and Interventional Neuroradiology
oairecerif.author.affiliationInstitute of Diagnostic and Interventional Neuroradiology
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.conferencepaper

Files

Collections