Publication:
Privacy Preserving Probabilistic Record Linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality.

cris.virtual.author-orcid0000-0001-5016-9822
cris.virtualsource.author-orcidfb0eb07d-5423-4229-ba06-1a5eaf537fac
cris.virtualsource.author-orcidc1f9da43-46a9-40ed-a543-f12eadde1664
cris.virtualsource.author-orcida65a1ccb-d060-4e23-87a5-0c9297d23a3d
datacite.rightsopen.access
dc.contributor.authorSchmidlin, Kurt
dc.contributor.authorClough, Kerri
dc.contributor.authorSpörri, Adrian
dc.date.accessioned2024-10-23T18:33:51Z
dc.date.available2024-10-23T18:33:51Z
dc.date.issued2015
dc.description.abstractBACKGROUND Record linkage of existing individual health care data is an efficient way to answer important epidemiological research questions. Reuse of individual health-related data faces several problems: Either a unique personal identifier, like social security number, is not available or non-unique person identifiable information, like names, are privacy protected and cannot be accessed. A solution to protect privacy in probabilistic record linkages is to encrypt these sensitive information. Unfortunately, encrypted hash codes of two names differ completely if the plain names differ only by a single character. Therefore, standard encryption methods cannot be applied. To overcome these challenges, we developed the Privacy Preserving Probabilistic Record Linkage (P3RL) method. METHODS In this Privacy Preserving Probabilistic Record Linkage method we apply a three-party protocol, with two sites collecting individual data and an independent trusted linkage center as the third partner. Our method consists of three main steps: pre-processing, encryption and probabilistic record linkage. Data pre-processing and encryption are done at the sites by local personnel. To guarantee similar quality and format of variables and identical encryption procedure at each site, the linkage center generates semi-automated pre-processing and encryption templates. To retrieve information (i.e. data structure) for the creation of templates without ever accessing plain person identifiable information, we introduced a novel method of data masking. Sensitive string variables are encrypted using Bloom filters, which enables calculation of similarity coefficients. For date variables, we developed special encryption procedures to handle the most common date errors. The linkage center performs probabilistic record linkage with encrypted person identifiable information and plain non-sensitive variables. RESULTS In this paper we describe step by step how to link existing health-related data using encryption methods to preserve privacy of persons in the study. CONCLUSION Privacy Preserving Probabilistic Record linkage expands record linkage facilities in settings where a unique identifier is unavailable and/or regulations restrict access to the non-unique person identifiable information needed to link existing health-related data sets. Automated pre-processing and encryption fully protect sensitive information ensuring participant confidentiality. This method is suitable not just for epidemiological research but also for any setting with similar challenges.
dc.description.numberOfPages10
dc.description.sponsorshipInstitut für Sozial- und Präventivmedizin (ISPM)
dc.identifier.doi10.7892/boris.69472
dc.identifier.pmid26024886
dc.identifier.publisherDOI10.1186/s12874-015-0038-6
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/133719
dc.language.isoen
dc.publisherBioMed Central
dc.relation.ispartofBMC Medical research methodology
dc.relation.issn1471-2288
dc.relation.organizationDCD5A442BECFE17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc300 - Social sciences, sociology & anthropology::360 - Social problems & social services
dc.titlePrivacy Preserving Probabilistic Record Linkage (P3RL): a novel method for linking existing health-related data and maintaining participant confidentiality.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPage46
oaire.citation.volume15
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2017-09-20 02:21:26
unibe.description.ispublishedpub
unibe.eprints.legacyId69472
unibe.journal.abbrevTitleBMC MED RES METHODOL
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Schmidlin BMCMedResMethodol 2015.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections