Publication:
Introducing a Comprehensive Framework for Synthetic ECG Validation: Application to Brugada Syndrome

cris.virtual.author-orcid0000-0002-7588-1418
cris.virtualsource.author-orcidb1fba0bb-a8d9-4046-8f5d-c42ad390c636
cris.virtualsource.author-orcidf967d337-8301-4772-8ea0-d2e57d8cb966
datacite.rightsopen.access
dc.contributor.authorZanchi, Beatrice
dc.contributor.authorMonachino, Giuliana
dc.contributor.authorMetaldi, Matteo
dc.contributor.authorConte, Giulio
dc.contributor.authorTzovara, Athina
dc.contributor.authorMeystre, Stèphane
dc.contributor.authorFaraci, Francesca D.
dc.date.accessioned2025-01-21T06:42:48Z
dc.date.available2025-01-21T06:42:48Z
dc.date.issued2024-08-30
dc.description.abstractRare cardiac disease research faces significant challenges due to limited data availability and accessibility. Recent advancements in synthetic data generation may be a cornerstone in overcoming urgent data needs. The present study presents a framework for synthetic ECG generation and evaluation and applies it to the case of Brugada Syndrome. A synthetic ECG dataset representative of Brugada type I patients is produced by leveraging a state-of-the-art generative adversarial network originally designed for normal ECG synthesis. A comprehensive evaluation procedure for synthetic biosignals is introduced. It includes visual inspection, ECG characteristic evaluation, established similarity metrics, and expert cardiologist scoring of both synthetic and real datasets. The evaluation of the synthetic Brugada dataset has shown optimal results, with less than 50% accuracy regarding cardiologists' scoring. These outcomes highlight the enormous potential of synthetic data generation techniques and the absolute need for a more standardized generation and evaluation process.
dc.description.sponsorshipInstitute of Computer Science
dc.description.sponsorshipClinic of Neurology
dc.identifier.doi10.48620/84779
dc.identifier.publisherDOI10.36227/techrxiv.172503860.07782126/v1
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/203149
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesTechRxiv
dc.titleIntroducing a Comprehensive Framework for Synthetic ECG Validation: Application to Brugada Syndrome
dc.typeworking_paper
dspace.entity.typePublication
dspace.file.typetext
oairecerif.author.affiliationInstitute of Computer Science
oairecerif.author.affiliation2Clinic of Neurology
unibe.additional.sponsorshipClinic of Neurology
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Zanchi, 2024, Introducing a comprehensive framework.pdf
Size:
648.39 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections