Publication: Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish
cris.virtual.author-orcid | 0000-0002-0905-6399 | |
cris.virtualsource.author-orcid | d859b62c-b0dc-4c81-8824-f971a2ff907f | |
cris.virtualsource.author-orcid | 79bc2168-817a-44ea-be31-b11af4269ff4 | |
datacite.rights | open.access | |
dc.contributor.author | González-Rosa, Juan Manuel | |
dc.contributor.author | Guzmán-Martínez, Gabriela | |
dc.contributor.author | dos Santos Marques, Ines Joao | |
dc.contributor.author | Sánchez-Iranzo, Héctor | |
dc.contributor.author | Jiménez-Borreguero, Luis Jesús | |
dc.contributor.author | Mercader Huber, Nadia Isabel | |
dc.date.accessioned | 2024-10-24T16:58:34Z | |
dc.date.available | 2024-10-24T16:58:34Z | |
dc.date.issued | 2014 | |
dc.description.abstract | AIMS While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. METHODS AND RESULTS Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. CONCLUSION Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models. | |
dc.description.sponsorship | Institut für Anatomie | |
dc.identifier.doi | 10.7892/boris.79613 | |
dc.identifier.pmid | 25532015 | |
dc.identifier.publisherDOI | 10.1371/journal.pone.0115604 | |
dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/140300 | |
dc.language.iso | en | |
dc.publisher | Public Library of Science | |
dc.relation.ispartof | PLoS ONE | |
dc.relation.issn | 1932-6203 | |
dc.relation.organization | DCD5A442BCD7E17DE0405C82790C4DE2 | |
dc.subject.ddc | 600 - Technology::610 - Medicine & health | |
dc.title | Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish | |
dc.type | article | |
dspace.entity.type | Publication | |
dspace.file.type | text | |
oaire.citation.issue | 12 | |
oaire.citation.startPage | e115604 | |
oaire.citation.volume | 9 | |
oairecerif.author.affiliation | Institut für Anatomie | |
oairecerif.author.affiliation | Institut für Anatomie | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.description.ispublished | pub | |
unibe.eprints.legacyId | 79613 | |
unibe.journal.abbrevTitle | PLOS ONE | |
unibe.refereed | true | |
unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- asset.pdf
- Size:
- 7.75 MB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- License:
- https://creativecommons.org/licenses/by/4.0
- Content:
- published