Publication:
Callisto's Atmosphere: First Evidence for H 2 and Constraints on H 2 O

cris.virtual.author-orcid0000-0002-2603-1169
cris.virtual.author-orcid0000-0003-2425-3793
cris.virtualsource.author-orcidedc2e2db-eeeb-4388-9109-3eb751bc5c8d
cris.virtualsource.author-orcid069d9b67-238f-4464-a6c9-e8cbc50613cf
cris.virtualsource.author-orcid42d6d8f6-192d-401b-b452-298d42a25bf0
cris.virtualsource.author-orcid16abb91e-17e5-44fe-81ce-8ebe0aaa571f
datacite.rightsopen.access
dc.contributor.authorCarberry Mogan, Shane Robert
dc.contributor.authorTucker, Orenthal J.
dc.contributor.authorJohnson, Robert E.
dc.contributor.authorRoth, Lorenz
dc.contributor.authorAlday, Juan
dc.contributor.authorVorburger, Audrey Helena
dc.contributor.authorWurz, Peter
dc.contributor.authorGalli, André
dc.contributor.authorSmith, H. Todd
dc.contributor.authorMarchand, Benoit
dc.contributor.authorOza, Apurva V.
dc.date.accessioned2024-10-25T15:50:53Z
dc.date.available2024-10-25T15:50:53Z
dc.date.issued2022-11
dc.description.abstractWe explore the parameter space for the contribution to Callisto's H corona observed by the Hubble Space Telescope from sublimated H2O and radiolytically produced H2 using the Direct Simulation Monte Carlo method. The spatial morphology of this corona produced via photoelectron and magnetospheric electron-impact-induced dissociation is described by tracking the motion of and simulating collisions between the hot H atoms and thermal molecules including a near-surface O2 component. Our results indicate that sublimated H2O produced from the surface ice, whether assumed to be intimately mixed with or distinctly segregated from the dark nonice or ice-poor regolith, cannot explain the observed structure of the H corona. On the other hand, a global H2 component can reproduce the observation, and is also capable of producing the enhanced electron densities observed at high altitudes by Galileo's plasma-wave instrument, providing the first evidence of H2 in Callisto's atmosphere. The range of H2 surface densities explored, under a variety of conditions, that are consistent with these observations is ∼(0.4–1) × 108 cm−3. The simulated H2 escape rates and estimated lifetimes suggest that Callisto has a neutral H2 torus. We also place a rough upper limit on the peak H2O number density (≲108 cm−3), column density (≲1015 cm−2), and sublimation flux (≲1012 cm−2 s−1), all of which are 1–2 orders of magnitude less than that assumed in previous models. Finally, we discuss the implications of these results, as well as how they compare to Europa and Ganymede
dc.description.sponsorshipPhysikalisches Institut - Space Research and Planetology Physics
dc.description.sponsorshipPhysikalisches Institut der Universität Bern
dc.description.sponsorshipSpace Research and Planetology Physics - Labs Planet in Situ
dc.identifier.doi10.48350/179767
dc.identifier.publisherDOI10.1029/2022JE007294
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/164907
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofJournal of Geophysical Research: Planets
dc.relation.issn2169-9097
dc.relation.organizationDCD5A442BE9BE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C44AE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::520 - Astronomy
dc.subject.ddc500 - Science::530 - Physics
dc.subject.ddc600 - Technology::620 - Engineering
dc.titleCallisto's Atmosphere: First Evidence for H 2 and Constraints on H 2 O
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue11
oaire.citation.volume127
oairecerif.author.affiliationPhysikalisches Institut - Space Research and Planetology Physics
oairecerif.author.affiliationSpace Research and Planetology Physics - Labs Planet in Situ
oairecerif.author.affiliationPhysikalisches Institut - Space Research and Planetology Physics
oairecerif.author.affiliationPhysikalisches Institut der Universität Bern
oairecerif.author.affiliation2Physikalisches Institut der Universität Bern
oairecerif.author.affiliation2Space Research and Planetology Physics - Labs Planet in Situ
oairecerif.author.affiliation2Physikalisches Institut - Space Research and Planetology Physics
oairecerif.author.affiliation3Physikalisches Institut - Space Research and Planetology Physics
oairecerif.author.affiliation3Physikalisches Institut der Universität Bern
oairecerif.author.affiliation3Space Research and Planetology Physics - Labs Planet in Situ
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-03-10 10:41:10
unibe.description.ispublishedpub
unibe.eprints.legacyId179767
unibe.journal.abbrevTitleJ. Geophys. Res. Planets
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
JGR_Planets_-_2022_-_Carberry_Mogan_-_Callisto_s_Atmosphere__First_Evidence_for_H2_and_Constraints_on_H2O.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections