Publication:
3D modelling of long-term sulfide corrosion of copper canisters in a spent nuclear fuel repository

cris.virtual.author-orcid0000-0002-5464-9820
cris.virtualsource.author-orcid7f952169-30d1-4b28-8072-9420a4ad893e
cris.virtualsource.author-orcidf8ab155a-5ee8-4392-96f9-2a26e5883897
cris.virtualsource.author-orcid2e1dc9c2-fbf6-4825-b221-7cbd2f502e67
cris.virtualsource.author-orcid04f10d20-fbc4-425b-b2bf-301bd775129e
datacite.rightsopen.access
dc.contributor.authorMa, Jin
dc.contributor.authorPekala, Marek
dc.contributor.authorAlt-Epping, Peter
dc.contributor.authorPastina, Barbara
dc.contributor.authorMaanoja, Susanna
dc.contributor.authorWersin, Paul
dc.date.accessioned2024-10-11T17:25:02Z
dc.date.available2024-10-11T17:25:02Z
dc.date.issued2022-11
dc.description.abstractCopper canisters are a central component in the safety of the Finnish spent fuel repository concept (KBS-3), where the main corrodent potentially affecting the canister integrity is sulfide. In this study, a 3D numerical model is developed to assess the evolution of sulfide fluxes and the spatially resolved canister corrosion depths for the Finnish spent nuclear fuel repository concept. The backfilled tunnel and the disposal hole are implemented using repository geometries, with sulfide being produced at their interface with the rock (excavation damaged zone) by sulfate reducing bacteria (SRB). Recent experimental findings regarding the microbial sulfate reduction process as well as the scavenging of sulfide via iron (oxy)hydroxides are incorporated in the reactive transport model. Long-term simulations are performed, predicting a heterogeneous corrosion of the canister with a max. corrosion depth of 1.3 mm at the bottom corner after one million years. The evolution of sulfide fluxes shows two main phases, depending on the source of sulfate: first sulfate is supplied by the dissolution of gypsum from the bentonite barriers, followed by a steady, low-level supply from the groundwater. Sensitivity cases demonstrate that both the organic carbon and Fe(III) oxide contents in the bentonite are critical to the corrosion evolution, by being the main electron donor for SRB activities and the major sulfide scavenger in the bentonite, respectively. The backfilled tunnel contributes little to the flux of corrosive sulfide to the canister due to the attenuation by Fe(III)-oxides/hydroxides but induces a notable flux of sulfate into the disposal hole.
dc.description.sponsorshipInstitut für Geologie
dc.identifier.doi10.48350/173880
dc.identifier.publisherDOI10.1016/j.apgeochem.2022.105439
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/88185
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofApplied geochemistry
dc.relation.issn0883-2927
dc.relation.organizationDCD5A442C18FE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C193E17DE0405C82790C4DE2
dc.subject.ddc500 - Science::550 - Earth sciences & geology
dc.title3D modelling of long-term sulfide corrosion of copper canisters in a spent nuclear fuel repository
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.startPage105439
oaire.citation.volume146
oairecerif.author.affiliationInstitut für Geologie
oairecerif.author.affiliationInstitut für Geologie
oairecerif.author.affiliationInstitut für Geologie
oairecerif.author.affiliationInstitut für Geologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-10-19 13:36:01
unibe.description.ispublishedpub
unibe.eprints.legacyId173880
unibe.journal.abbrevTitleAPPL GEOCHEM
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
1-s2.0-S0883292722002438-main.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections