Publication:
Left Ventricular Myocardial Dysfunction Evaluation in Thalassemia Patients Using Echocardiographic Radiomic Features and Machine Learning Algorithms.

cris.virtualsource.author-orcidf7d1460a-158d-4e47-8e48-658f1c49875d
datacite.rightsopen.access
dc.contributor.authorTaleie, Haniyeh
dc.contributor.authorHajianfar, Ghasem
dc.contributor.authorSabouri, Maziar
dc.contributor.authorParsaee, Mozhgan
dc.contributor.authorHoushmand, Golnaz
dc.contributor.authorBitarafan-Rajabi, Ahmad
dc.contributor.authorZaidi, Habib
dc.contributor.authorShiri Lord, Isaac
dc.date.accessioned2024-10-25T18:09:40Z
dc.date.available2024-10-25T18:09:40Z
dc.date.issued2023-12
dc.description.abstractHeart failure caused by iron deposits in the myocardium is the primary cause of mortality in beta-thalassemia major patients. Cardiac magnetic resonance imaging (CMRI) T2* is the primary screening technique used to detect myocardial iron overload, but inherently bears some limitations. In this study, we aimed to differentiate beta-thalassemia major patients with myocardial iron overload from those without myocardial iron overload (detected by T2*CMRI) based on radiomic features extracted from echocardiography images and machine learning (ML) in patients with normal left ventricular ejection fraction (LVEF > 55%) in echocardiography. Out of 91 cases, 44 patients with thalassemia major with normal LVEF (> 55%) and T2* ≤ 20 ms and 47 people with LVEF > 55% and T2* > 20 ms as the control group were included in the study. Radiomic features were extracted for each end-systolic (ES) and end-diastolic (ED) image. Then, three feature selection (FS) methods and six different classifiers were used. The models were evaluated using various metrics, including the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Maximum relevance-minimum redundancy-eXtreme gradient boosting (MRMR-XGB) (AUC = 0.73, ACC = 0.73, SPE = 0.73, SEN = 0.73), ANOVA-MLP (AUC = 0.69, ACC = 0.69, SPE = 0.56, SEN = 0.83), and recursive feature elimination-K-nearest neighbors (RFE-KNN) (AUC = 0.65, ACC = 0.65, SPE = 0.64, SEN = 0.65) were the best models in ED, ES, and ED&ES datasets. Using radiomic features extracted from echocardiographic images and ML, it is feasible to predict cardiac problems caused by iron overload.
dc.description.numberOfPages13
dc.description.sponsorshipUniversitätsklinik für Kardiologie
dc.identifier.doi10.48350/186520
dc.identifier.pmid37735309
dc.identifier.publisherDOI10.1007/s10278-023-00891-0
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/170150
dc.language.isoen
dc.publisherSpringer-Verlag
dc.relation.ispartofJournal of digital imaging
dc.relation.issn0897-1889
dc.relation.organizationDCD5A442BB15E17DE0405C82790C4DE2
dc.subjectCardiac magnetic resonance imaging Echocardiography Machine learning Radiomics Thalassemia
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleLeft Ventricular Myocardial Dysfunction Evaluation in Thalassemia Patients Using Echocardiographic Radiomic Features and Machine Learning Algorithms.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage2506
oaire.citation.issue6
oaire.citation.startPage2494
oaire.citation.volume36
oairecerif.author.affiliationUniversitätsklinik für Kardiologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-09-26 07:35:36
unibe.description.ispublishedpub
unibe.eprints.legacyId186520
unibe.journal.abbrevTitleJ DIGIT IMAGING
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s10278-023-00891-0.pdf
Size:
5.57 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections