Publication:
Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography

cris.virtual.author-orcid0000-0003-3388-9187
cris.virtual.author-orcid0000-0003-4025-3961
cris.virtualsource.author-orcid07c63486-ee3a-4e33-8520-eaaadbf8dc8b
cris.virtualsource.author-orcid36ac9000-546f-4dd0-af34-f5f15be8bfbe
datacite.rightsmetadata.only
dc.contributor.authorTsuda, A
dc.contributor.authorFilipovic, N
dc.contributor.authorHaberthür, David
dc.contributor.authorDickie, R
dc.contributor.authorMatsui, Y
dc.contributor.authorStampanoni, M
dc.contributor.authorSchittny, Johannes
dc.date.accessioned2024-10-13T18:12:24Z
dc.date.available2024-10-13T18:12:24Z
dc.date.issued2008
dc.description.abstractThe alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.
dc.description.numberOfPages13
dc.description.sponsorshipInstitut für Anatomie, funktionelle Anatomie
dc.identifier.isi000259038900026
dc.identifier.pmid18583378
dc.identifier.publisherDOI10.1152/japplphysiol.90546.2008
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/100939
dc.language.isoen
dc.publisherAmerican Physiological Society
dc.publisher.placeBethesda, Md.
dc.relation.isbn18583378
dc.relation.ispartofJournal of applied physiology
dc.relation.issn8750-7587
dc.relation.organizationDCD5A442BD6AE17DE0405C82790C4DE2
dc.titleFinite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography
dc.typearticle
dspace.entity.typePublication
oaire.citation.endPage76
oaire.citation.issue3
oaire.citation.startPage964
oaire.citation.volume105
oairecerif.author.affiliationInstitut für Anatomie, funktionelle Anatomie
oairecerif.author.affiliationInstitut für Anatomie, funktionelle Anatomie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId27533
unibe.journal.abbrevTitleJ APPL PHYSIOL
unibe.subtype.articlejournal

Files

Collections