Publication:
Distance transforms for real-valued functions

cris.virtual.author-orcid0000-0003-2502-0334
cris.virtualsource.author-orcid06b5b9e7-e972-4733-84b9-589838e3cf08
dc.contributor.authorMolchanov, Ilya
dc.contributor.authorTerán, Pedro
dc.date.accessioned2024-10-24T17:46:37Z
dc.date.available2024-10-24T17:46:37Z
dc.date.issued2003
dc.description.abstractA set in a metric space gives rise to its distance function that associates with every point its distance to the nearest point in the set. This function is called the distance transform of the original set. In the same vein, given a real-valued function f we consider the expected distances from any point to alevelset of f taken at a random height. This produces another function called a distance transform of f. Such transforms are called grey-scale distance transforms to signpost their differences from the binary case when sets (or their indicators) give rise to conventional distance functions. Basic properties of the introduced grey-scale distance transform are discussed. The most important issue is the uniqueness problem whether two different functions may share the same distance transform. We answer this problem in a generality completely sufficient for all practical applications in imaging sciences, the full-scale problem remains open.
dc.description.numberOfPages13
dc.description.sponsorshipInstitut für Mathematische Statistik und Versicherungslehre (IMSV)
dc.identifier.doi10.7892/boris.85365
dc.identifier.publisherDOI10.1016/S0022-247X(02)00719-9
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/143459
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofJournal of mathematical analysis and applications
dc.relation.issn0022-247X
dc.relation.organizationDCD5A442C025E17DE0405C82790C4DE2
dc.subject.ddc500 - Science::510 - Mathematics
dc.titleDistance transforms for real-valued functions
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage484
oaire.citation.issue2
oaire.citation.startPage472
oaire.citation.volume278
oairecerif.author.affiliationInstitut für Mathematische Statistik und Versicherungslehre (IMSV)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId85365
unibe.journal.abbrevTitleJ MATH ANAL APPL
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
1-s2.0-S0022247X02007199-main.pdf
Size:
156.5 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections