Publication:
MLcps: machine learning cumulative performance score for classification problems.

cris.virtual.author-orcid0000-0003-3186-7478
cris.virtual.author-orcid0000-0002-9625-6259
cris.virtualsource.author-orcid23ffeeb4-dc17-4827-a542-a0a09e8cae90
cris.virtualsource.author-orcid0e759413-1b84-479a-86e3-790e4ba34079
cris.virtualsource.author-orcid4466e550-1009-4d15-a4d5-16aecd15ef40
cris.virtualsource.author-orcid0318e4b5-8219-4020-8e56-f9862fa7b7e4
dc.contributor.authorAkshay, Akshay
dc.contributor.authorAbedi, Masoud
dc.contributor.authorShekarchizadeh, Navid
dc.contributor.authorBurkhard, Fiona Christine
dc.contributor.authorKatoch, Mitali
dc.contributor.authorBigger-Allen, Alex
dc.contributor.authorAdam, Rosalyn M
dc.contributor.authorMonastyrskaya-Stäuber, Katia
dc.contributor.authorHashemi Gheinani, Ali
dc.date.accessioned2024-10-26T16:44:16Z
dc.date.available2024-10-26T16:44:16Z
dc.date.issued2022-12-28
dc.description.abstractBACKGROUND Assessing the performance of machine learning (ML) models requires careful consideration of the evaluation metrics used. It is often necessary to utilize multiple metrics to gain a comprehensive understanding of a trained model's performance, as each metric focuses on a specific aspect. However, comparing the scores of these individual metrics for each model to determine the best-performing model can be time-consuming and susceptible to subjective user preferences, potentially introducing bias. RESULTS We propose the Machine Learning Cumulative Performance Score (MLcps), a novel evaluation metric for classification problems. MLcps integrates several precomputed evaluation metrics into a unified score, enabling a comprehensive assessment of the trained model's strengths and weaknesses. We tested MLcps on 4 publicly available datasets, and the results demonstrate that MLcps provides a holistic evaluation of the model's robustness, ensuring a thorough understanding of its overall performance. CONCLUSIONS By utilizing MLcps, researchers and practitioners no longer need to individually examine and compare multiple metrics to identify the best-performing models. Instead, they can rely on a single MLcps value to assess the overall performance of their ML models. This streamlined evaluation process saves valuable time and effort, enhancing the efficiency of model evaluation. MLcps is available as a Python package at https://pypi.org/project/MLcps/.
dc.description.sponsorshipDepartment for BioMedical Research, Forschungsgruppe Urologie
dc.description.sponsorshipUniversitätsklinik für Urologie
dc.identifier.doi10.48350/190326
dc.identifier.pmid38091508
dc.identifier.publisherDOI10.1093/gigascience/giad108
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/172409
dc.language.isoen
dc.publisherOxford University Press
dc.relation.ispartofGigaScience
dc.relation.issn2047-217X
dc.relation.organizationDCD5A442BE73E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BD18E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C238E17DE0405C82790C4DE2
dc.relation.schoolDCD5A442C27BE17DE0405C82790C4DE2
dc.subjectPython package classification problems machine learning model evaluation unified evaluation score
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc600 - Technology::630 - Agriculture
dc.titleMLcps: machine learning cumulative performance score for classification problems.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.volume12
oairecerif.author.affiliationDepartment for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliation2Department for BioMedical Research (DBMR)
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliation3Department for BioMedical Research (DBMR)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-12-15 05:01:05
unibe.description.ispublishedpub
unibe.eprints.legacyId190326
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
giad108.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections