Publication:
ORDNA: Deep-learning-based ordination for raw environmental DNA samples

cris.virtual.author-orcid0000-0002-4387-3886
cris.virtualsource.author-orcidde673178-3c82-4552-a2fc-0e3456f085a6
dc.contributor.authorSanchez, Théophile
dc.contributor.authorStalder, Steven
dc.contributor.authorLamperti, Letizia
dc.contributor.authorBrosse, Sébastien
dc.contributor.authorFrossard, Aline
dc.contributor.authorLeugger, Flurin
dc.contributor.authorRozanski, Romane
dc.contributor.authorZong, Shuo
dc.contributor.authorManel, Stéphanie
dc.contributor.authorMedici, Laura
dc.contributor.authorKuhn, Fabienne
dc.contributor.authorHan, Xingguo
dc.contributor.authorMestrot, Adrien
dc.contributor.authorAlbouy, Camille
dc.contributor.authorVolpi, Michele
dc.contributor.authorPellissier, Loïc
dc.date.accessioned2025-04-10T08:22:26Z
dc.date.available2025-04-10T08:22:26Z
dc.date.issued2025-04-03
dc.description.abstractEnvironmental DNA (eDNA) metabarcoding has revolutionized biodiversity monitoring, offering non-invasive tools to assess ecosystem health. The complexity of eDNA metabarcoding data poses major challenges for conventional ordination methods in understanding assemblage similarities and assessing biodiversity patterns. Here, we introduce ORDNA (ORDination via Deep Neural Algorithm), a new deep learning method tailored for eDNA sample ordination. Leveraging artificial neural networks, ORDNA processes raw sequences from eDNA samples directly, bypassing potentially biased and cumbersome expert-based bioinformatic steps. The method is trained with a contrastive self-supervised learning approach, the triplet loss, to derive a two-dimensional representation of eDNA samples based on their read composition. We apply ORDNA to four distinct eDNA datasets, demonstrating its robustness and superiority over traditional ordination techniques in capturing and visualizing ecological patterns. Our results underline the potential of deep learning in advancing eDNA analysis, with ORDNA serving as a promising tool for more accurate and efficient biodiversity assessments.
dc.description.sponsorshipInstitute of Geography
dc.identifier.doi10.48620/87165
dc.identifier.publisherDOI10.1111/2041-210x.70033
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/209428
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofMethods in Ecology and Evolution
dc.relation.issn2041-210X
dc.titleORDNA: Deep-learning-based ordination for raw environmental DNA samples
dc.typearticle
dspace.entity.typePublication
oairecerif.author.affiliationInstitute of Geography
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Methods Ecol Evol - 2025 - Sanchez - ORDNA Deep‐learning‐based ordination for raw environmental DNA samples.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc/4.0
Content:
published

Collections