Publication: EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States.
| cris.virtual.author-orcid | 0000-0002-1472-4638 | |
| cris.virtualsource.author-orcid | 7a31d195-a565-4659-9ab7-18490b97cee5 | |
| datacite.rights | open.access | |
| dc.contributor.author | Abreu, Rodolfo | |
| dc.contributor.author | Jorge, João | |
| dc.contributor.author | Leal, Alberto | |
| dc.contributor.author | König, Thomas | |
| dc.contributor.author | Figueiredo, Patrícia | |
| dc.date.accessioned | 2024-09-02T16:31:35Z | |
| dc.date.available | 2024-09-02T16:31:35Z | |
| dc.date.issued | 2020-11-07 | |
| dc.description.abstract | Brain functional connectivity measured by resting-state fMRI varies over multiple time scales, and recurrent dynamic functional connectivity (dFC) states have been identified. These have been found to be associated with different cognitive and pathological states, with potential as disease biomarkers, but their neuronal underpinnings remain a matter of debate. A number of recurrent microstates have also been identified in resting-state EEG studies, which are thought to represent the quasi-simultaneous activity of large-scale functional networks reflecting time-varying brain states. Here, we hypothesized that fMRI-derived dFC states may be associated with these EEG microstates. To test this hypothesis, we quantitatively assessed the ability of EEG microstates to predict concurrent fMRI dFC states in simultaneous EEG-fMRI data collected from healthy subjects at rest. By training a random forests classifier, we found that the four canonical EEG microstates predicted fMRI dFC states with an accuracy of 90%, clearly outperforming alternative EEG features such as spectral power. Our results indicate that EEG microstates analysis yields robust signatures of fMRI dFC states, providing evidence of the electrophysiological underpinnings of dFC while also further supporting that EEG microstates reflect the dynamics of large-scale brain networks. | |
| dc.description.numberOfPages | 15 | |
| dc.description.sponsorship | Zentrum für Translationale Forschung der Universitätsklinik für Psychiatrie und Psychotherapie | |
| dc.identifier.doi | 10.48350/148867 | |
| dc.identifier.pmid | 33161518 | |
| dc.identifier.publisherDOI | 10.1007/s10548-020-00805-1 | |
| dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/38322 | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.relation.ispartof | Brain topography | |
| dc.relation.issn | 0896-0267 | |
| dc.relation.organization | Zentrum für Translationale Forschung der Universitätsklinik für Psychiatrie und Psychotherapie | |
| dc.subject | EEG microstates Random forests Simultaneous EEG-fMRI fMRI dynamic functional connectivity | |
| dc.subject.ddc | 600 - Technology::610 - Medicine & health | |
| dc.title | EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States. | |
| dc.type | article | |
| dspace.entity.type | Publication | |
| oaire.citation.endPage | 55 | |
| oaire.citation.issue | 1 | |
| oaire.citation.startPage | 41 | |
| oaire.citation.volume | 34 | |
| oairecerif.author.affiliation | Zentrum für Translationale Forschung der Universitätsklinik für Psychiatrie und Psychotherapie | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.date.embargoChanged | 2022-05-13 13:12:40 | |
| unibe.date.licenseChanged | 2020-12-23 13:44:13 | |
| unibe.description.ispublished | pub | |
| unibe.eprints.legacyId | 148867 | |
| unibe.journal.abbrevTitle | BRAIN TOPOGR | |
| unibe.refereed | true | |
| unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- Abreu2020_Article_EEGMicrostatesPredictConcurren.pdf
- Size:
- 6.92 MB
- Format:
- Adobe Portable Document Format
- License:
- publisher
- Content:
- published