Publication:
EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States.

cris.virtual.author-orcid0000-0002-1472-4638
cris.virtualsource.author-orcid7a31d195-a565-4659-9ab7-18490b97cee5
datacite.rightsopen.access
dc.contributor.authorAbreu, Rodolfo
dc.contributor.authorJorge, João
dc.contributor.authorLeal, Alberto
dc.contributor.authorKönig, Thomas
dc.contributor.authorFigueiredo, Patrícia
dc.date.accessioned2024-09-02T16:31:35Z
dc.date.available2024-09-02T16:31:35Z
dc.date.issued2020-11-07
dc.description.abstractBrain functional connectivity measured by resting-state fMRI varies over multiple time scales, and recurrent dynamic functional connectivity (dFC) states have been identified. These have been found to be associated with different cognitive and pathological states, with potential as disease biomarkers, but their neuronal underpinnings remain a matter of debate. A number of recurrent microstates have also been identified in resting-state EEG studies, which are thought to represent the quasi-simultaneous activity of large-scale functional networks reflecting time-varying brain states. Here, we hypothesized that fMRI-derived dFC states may be associated with these EEG microstates. To test this hypothesis, we quantitatively assessed the ability of EEG microstates to predict concurrent fMRI dFC states in simultaneous EEG-fMRI data collected from healthy subjects at rest. By training a random forests classifier, we found that the four canonical EEG microstates predicted fMRI dFC states with an accuracy of 90%, clearly outperforming alternative EEG features such as spectral power. Our results indicate that EEG microstates analysis yields robust signatures of fMRI dFC states, providing evidence of the electrophysiological underpinnings of dFC while also further supporting that EEG microstates reflect the dynamics of large-scale brain networks.
dc.description.numberOfPages15
dc.description.sponsorshipZentrum für Translationale Forschung der Universitätsklinik für Psychiatrie und Psychotherapie
dc.identifier.doi10.48350/148867
dc.identifier.pmid33161518
dc.identifier.publisherDOI10.1007/s10548-020-00805-1
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/38322
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofBrain topography
dc.relation.issn0896-0267
dc.relation.organizationZentrum für Translationale Forschung der Universitätsklinik für Psychiatrie und Psychotherapie
dc.subjectEEG microstates Random forests Simultaneous EEG-fMRI fMRI dynamic functional connectivity
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleEEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States.
dc.typearticle
dspace.entity.typePublication
oaire.citation.endPage55
oaire.citation.issue1
oaire.citation.startPage41
oaire.citation.volume34
oairecerif.author.affiliationZentrum für Translationale Forschung der Universitätsklinik für Psychiatrie und Psychotherapie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.embargoChanged2022-05-13 13:12:40
unibe.date.licenseChanged2020-12-23 13:44:13
unibe.description.ispublishedpub
unibe.eprints.legacyId148867
unibe.journal.abbrevTitleBRAIN TOPOGR
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Abreu2020_Article_EEGMicrostatesPredictConcurren.pdf
Size:
6.92 MB
Format:
Adobe Portable Document Format
License:
publisher
Content:
published

Collections