
Appendix 2: Data Cleaning Guidelines Patrick Illien

 1

Data Cleaning Guidelines

for 2nd Phase FATE-Surveys: Stata Syntax
Abridged version

Author: Patrick Illien1

Contents
Introduction .. 2
Copying Dataset .. 3
Documenting Changes and Getting Started ... 3
Deleting Cases .. 4
Tidying Dataset .. 5
Checking and Correcting Identifiers .. 6
Adding new Identifiers ... 7
Consistency Checks ... 9

Consistency Checks for Part 1 .. 9
Consistency Checks for Part 2 ... 14

Dealing with Missing Data ... 15
Dealing with Outliers .. 16
Labelling .. 16
Anonymising Data .. 19
Backup .. 20

1 I would like to thank Dr. Christoph Bader and Dr. Maurice Tschopp for valuable inputs.

Appendix 2: Data Cleaning Guidelines Patrick Illien

 2

Introduction
These guidelines have been developed for the 2nd phase FATE surveys to ensure a minimum standard for
comparability. The present docment has been inspired by the following sources, which contain useful tips
and should be consulted for more information:

• ACAPS, 2016. Data cleaning: technical brief. Available here.
• Beaver, M., 2012. Survey Data Cleaning Guidelines: (SPSS and Stata). Available here.
• Data Science Primer, 2018. Chapter 3: Data Cleaning. Available here.
• IFPRI (International Food Policy Research Institute), 2018. A guide to data cleaning using Stata. Available here.

Most of this guide is presented in tables. In each one those, the left columns describe the steps to be taken,
whereas the right columns show the corresponding Stata syntax. All Stata codes were created and tested
using version 15.1. The guidelines have a logical order and each step should be undertaken after the other
because some syntax only works if the previous ones have already been applied successfully.

Of course, the better the survey is designed, the less errors will be made later. Investing time in survey
design, coding and enumerator training at the start pays!

Unless otherwise stated, mark problematic observations, don’t change values – it is up to the analysis how
to deal with them!

https://www.acaps.org/sites/acaps/files/resources/files/acaps_technical_brief_data_cleaning_april_2016_0.pdf
https://www.researchgate.net/publication/254388151_Survey_Data_Cleaning_Guidelines_SPSS_and_Stata_1st_Edition
https://elitedatascience.com/data-cleaning
http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/132297

Appendix 2: Data Cleaning Guidelines Patrick Illien

 3

Copying Dataset
• Perform all steps for each dataset (wide and all longs of part 1 & 2).
• The first thing to do is to make a copy of the original data file (a simple copy without

opening the raw data in a programme)! ALWAYS keep the source files in a separate folder
called “RAW DATA” and change its attribute to READ-ONLY, to avoid modification of any of the
files. Then encrypt the raw-data files and don’t forget to back them up as well.

• Never touch the original data and only work in the copied filed from now on, even if only importing
the data into a programme. Discuss with your supervisors if the original data (which are not
anonymised) shall be deleted after data analysis is finished.

Documenting Changes and Getting Started
• Perform all steps in each dataset (wide and all longs of part 1 & 2).
• Be sure to always document any changes you make directly in a R, Stata or SPSS when using any

of these software packages. If you use any other software, document any changes in an excel sheet
variable by variable.

What? How? (STATA syntax)
• Make one change log per dataset

and keep the change logs
organised.

• Each change log contains all
modifications to that dataset and
will serve as an audit trail. It will
allow a return to the original value
if required. Within the change log,
store the following information:

o At the top of the file:
 Country and

survey year (if
necessary also
survey type)

 Dataset
 Date of file status
 Author of file
 Purpose of file
 Comments

o Throughout:
 Variable or

observation
concerned

 What the change
was (e.g. old and
new value)

 Comments/justifi
cation

• Always document your comments and commands in
do-files, the are the change log when working with
Stata.

• You can organise your do-files in Stata’s project
manager. Open in from within the do-file editor on
Windows and Unix or from within the main menu on
Mac (select File>New>Project....)

• Create one master do-file per dataset and name it
accordingly: type doedit into the command window to
create a do-file where you write your commands. You
can add comments after * at the start of a line. Save the
do-file into the project manager.

• Add all the relevant information at the top as described
in the left column.

• Apply the structure and cleaning process of this guide
and add section titles accordingly. Take over all the
relevant commands from each section in this guide. In
each section, the datasets in which certain steps have to
be performed (i.e. which have to be added to the do-file)
are specified in colour.

• Describe and justify each change you make to the data.
• All the other information will be readable from the

commands themselves but it is always good to add
some descriptions.

• Repeat the entire process for each dataset (all wide and
longs of part 1 & 2).

• Increase the number of variables
allowed by the software

• clear
set maxvar 10000

• Increase the size of the results
window display

• set scrollbufsize 700000

Appendix 2: Data Cleaning Guidelines Patrick Illien

 4

• Specify the directory/path to the
copy of the raw data

• Use the cd command, for example:
cd "Z:\Data_Cleaning\Stata"

• Import the copy of your raw data
into your software package

• Use the import command with clear in order to start
from a clean slate, make sure to specify the bindquotes
option with strict as else it might mess up how it
delimites doulbe quotes, for example:

import delimited
Long_format_22.10/FATE_Rwanda_Part_1_221018_
final.csv, bindquotes(strict) clear

Deleting Cases
• Perform these steps only for the wide and long_final datasets of part 1 & 2.
• As a general rule, you should not delete any data!
• The only exception is if all or almost all entries (including key demographics) are blank for a

household. This may be the case if the enumerators wrongly submitted a trial run or an aborted
interview. We do this step at the start so that the faulty submissions don’t add confusion when
doing all subsequent cleaning steps (e.g. adding new identifiers, doing consistency checks, etc.).

What? How? (STATA syntax)
• Delete line if there

are no
observations
(“blank row”)

• egen nmiss = rowmiss(_all)
display c(k)
drop if nmiss==c(k)-1

• Alternatively you can install the “missings” package and type the
following:

missings dropobs _all, force
display r(n_dropped)

• Delete line if
almost all entries
are blank

• ds,
return list
local varlist=r(varlist)
egen count_miss=rowmiss(`varlist')
capture describe
generate count_miss_prop=count_miss/r(k)*100
list count_miss_prop
list submissiondate code_id village today_date a2_nameprim key if
count_miss_prop>99
count if count_miss_prop>99
*check the list and double check (if necessary in the dataset) to see if you
really want to delete those observations
drop if count_miss_prop>99.5
count

• You can also check the percentage of missing observations like this:
missings report, observations percent

Appendix 2: Data Cleaning Guidelines Patrick Illien

 5

Tidying Dataset
• Perform all steps in each dataset (wide and all longs of part 1 & 2).
• Make sure that the dataset is tidied up as follows

What? How? (STATA syntax)

• Fonts have been harmonised • Automatically done in Stata when importing the csv file.
• Leading and trailing spaces of

string variables have been deleted
• ds, has(type string)

foreach var of varlist `r(varlist)' {
replace `var'=stritrim(`var')
}

• Put all string variables into lower
case

• ds, has(type string)
foreach var of varlist `r(varlist)' {
replace `var'=lower(`var')
}

• Put all variable names into lower
case and delete spaces

• We don’t need to delete spaces as Stata doesn’t allow
them in variable names anyways, only put in lower case:

rename *, lower
• Replace all the NA and DK and

convert only the variables with
single numbers to numerics

• ds, has(type string)
foreach var of varlist `r(varlist)' {
replace `var'=".a" if `var'=="na" & length(`var')==2
replace `var'=".b" if `var'=="dk" & length(`var')==2
}

ds, has(type string)
foreach var of varlist `r(varlist)' {
count if strmatch(`var',"* *")==1 | regexm(`var',"[a-zA-
Z]")==1 & regexm(`var',"\.a")==0 & regexm(`var',"\.b")==0
if r(N)==0 {
destring `var', replace
}
}

• Once, all the NA and DK have
been changed, check for
inconsistencies in alphabetic
responses or categories by
showing all string responses
containing any alphabetical
letters

• ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if `var'!="" & regexm(`var',"[a-zA-Z]")==1
}

• Go through the entire list and
check for mislabeled categorical
string labels, i.e. separate classes
that should really be the same, e.g.
If ’there is kgs’ and ’kilo’ and “kg”,
you should combine them. Modify
this code to correct all mislabeled
categorical variables

• ds, has(type string)
foreach var of varlist `r(varlist)' {
replace `var'="kg" if `var'=="kgs" | `var'=="kilo" |
`var'=="kilos"
}

• Check for remaining
inconsistencies (adjust relevant
variable names according to
dataset)

• You can exclude variables that you don’t want to check
as follows (this depends on the dataset):

preserve
drop submissiondate a13_codeenumerator village
starttime today_date a2_nameprim fam_name*
end_time instanceid key

Appendix 2: Data Cleaning Guidelines Patrick Illien

 6

ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if `var'!="" & `var'!="kg" & regexm(`var',"[a-
zA-Z]")==1
}
restore

• List variables containing multiple
answers

• ds, has(type string)
foreach var of varlist `r(varlist)' {
count if strmatch(`var',"* *")==1 & regexm(`var',"[a-zA-
Z]")==0
if r(N)>0 {
list `var' if `var'!=""
}
}

• List only the multiple answer
observations

• ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if strmatch(`var',"* *")==1 & regexm(`var',"[a-zA-
Z]")==0 & `var'!=""
}

• Show all string responses that
contain any number

• ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if regexm(`var',"[0/9]")==1
}

• Make sure that there are no
variables containing only single
numbers that are characterised as
strings. The following commands
should yield no result

• ds, has(type string)
foreach var of varlist `r(varlist)' {
count if strmatch(`var',"* *")==1 | regexm(`var',"[a-zA-
Z]")==1 & regexm(`var',"\.a")==0 & regexm(`var',"\.b")==0
if r(N)==0 {
list `var' if `var'!=""
}
}

• Save everything you have done up
to now under the name
clean_draft

• For example:
save Wide_format_22.10/FATE_Rwanda_Part
_1_221018_final_WIDE_clean_draft, replace
clear

Checking and Correcting Identifiers
• Perform all steps in the wide and long_final datasets of part 1 & 2).
• Each household will receive its unique identifier. We therefore have to first make sure that the code_id

is attached to the correct household and that it is the same household for a specific code_id in part 1
and part 2. We will merge certain key characteristics of part 1 and 2 to check if the households match
but we will continue working on the separate datasets after.

What? How?
(STATA syntax)

• First correct any wrong IDs of part 1, e.g. if they exist twice, manually in
accordance with your sample frame. Part 1 code_id must be unique so
that we can match part 1 and 2 of the survey correctly for each household.
If you have discovered some manifest errors in the identity of the
respondent, such as wrong code_ids or gender, correct them directly in
the wide and long datasets of part 1 and 2 via the use command in your

• Run do-files
provided by the
project

Appendix 2: Data Cleaning Guidelines Patrick Illien

 7

do-file. Inspect households that were not available and have most entries
missing (avail!=1) and mark them with “delete”.

• Then prepare part 2 for the merger. Inspect households that were not
available and have most entries missing (avail!=1) and mark them with
“delete”. You don’t need to check anything here, we will do that in the
merged file.

• Merge the key identifiers of part 1 and 2 in a new dataset to check if each
household is correct

• Now undertake as many cross-checks as possible in order to ensure that
each household of part 1 corresponds to the correct household of part 2.
Check any inconsistencies manually with the sampling frame and
describe the problem. This is the most tedious cleaning step and might
take some time.

• If you have discovered some manifest errors in the identity of the
respondent, such as wrong code_ids or gender, correct them directly in
the relevant wide and long datasets of part 1 and 2 via the use command
in your do-file. Other inconsistencies (such as different household types
or agricultural production), do not have to be changed as it is up to the
analyst how to deal with them (they might exclude them or make certain
assumptions such as that every household has a vegetable garden). You
should nevertheless describe these inconsistencies in a new variable
called “remarks”. They might in part be based on different interpretations
of the question.

• Make sure to save all the keys if the entire code_id will be deleted in a new
dataset that you can later use for the long do-files of part 1 (other than
long_final), see below.

• Now merge the corrected datasets and run all checks again to see if they
now yield the correct results.

Adding new Identifiers
• Perform all steps in each dataset (wide and all longs of part 1 & 2).
• When you are sure that all your households are identified correctly and the data cleaning has been

done, create new unique household identifiers in the following way (we will not create unique
identifiers for each individual). This is to create simple, totally anonymised and unique identifiers
across all datasets. We do this step before the consistency checks so that we have already corrected
any possibly wrong household entries.

What? How? (STATA syntax)
• Create new unique

identifiers:
o Country code /

last two digits of
year in which
survey took
place/random
consecutive
three-digit
household
number
(preceeded by
zeros as

• Run do-files provided by the project
• This is the key step in it creating new unique identifiers:

set seed 2345
gen random=runiform()
sort code_id, stable
by code_id: gen group_random=random[1]
egen sequence=group(group_random), missing
gen survey="418"
tostring sequence, replace format(%03.0f)
gen new_identifier=survey+sequence
destring new_identifier, replace
sort new_identifier

Appendix 2: Data Cleaning Guidelines Patrick Illien

 8

placeholders if
necessary)

• Create an identifier
template that you can
use after to add the
unique identifiers into
each dataset.

• This step is included in the do-files provided by the project:
preserve
keep code_id key_part1 dup_key_part1 new_identifier
order new_identifier, first
duplicates drop if dup_key_part1>0
drop dup_key_part1
rename key_part1 key
save Identifiers/New_identifiers_part1_key, replace
restore

• Make sure to use the
correct file

• For example:
use
Wide_format_22.10/FATE_Rwanda_Part_1_221018_final_WID
E_idcheck, clear

• Merge unique identifier
variables into all
datasets using the key
variable

• Part 1, wide and long_final formats:
merge m:1 key using "Identifiers/New_identifiers_part1_key"
order new_identifier, first
list if new_identifier==. /*this list should be empty*/
list if _merge!=3 /*this list should be empty*/
save
Wide_format_22.10/FATE_Rwanda_Part_1_221018_final_WID
E_idcheck, replace

• Part 1, all other long formats:
merge m:1 parent_key using
"Identifiers/New_identifiers_part1_parent_key"
order new_identifier, first
*check if _merge 1 observations are households that have been
deleted
preserve
keep if _merge==1
keep new_identifier parent_key _merge
rename _merge _merge_master
merge m:1 parent_key using "Identifiers/Deleted_households"
/*now go manually through list and identify all anomalies*/
restore
drop if _merge==1
list if new_identifier==. /*this list should be empty*/
list if parent_key=="" /*this list should be empty*/
save Long_format_22.10/FATE_Rwanda_Part_1_221018_final-
consent_given-hired_labour-repeat_cc5_idcheck, replace

• Part 2, wide and long formats:
merge m:1 key using "Identifiers/New_identifiers_part2_key"
order new_identifier, first
list if new_identifier==. /*this list should be empty*/
list if _merge!=3 /*this list should be empty*/
save
Wide_format_22.10/FATE_Rwanda_Part_2_221018_final_WID
E_idcheck, replace

Appendix 2: Data Cleaning Guidelines Patrick Illien

 9

Consistency Checks
• We undertake some key consistency checks at this stage. However, we don’t check for all possible

inconsistencies. First, many rules were already inserted in the ODK file in order to avoid logical
problems from the start and we don’t have to re-check for most of them (some were also inserted in
order to facilitate the question presentation but are not relevant for analysis and can be ignored).
Second, it is up to the analyst to detect and deal with outliers. We therefore went through all the survey
questions and prioritised the following consistency checks that you should undertake now. The rest is
up to the analyst.

• Mark all the inconsistencies you find but don’t change any data. It is up to the analyst to effect those
changes and to justify and document them.

What? How? (STATA syntax)
• Undertake one check after the other • Within a do-file, each check is a separate

activity. The checks should be run, one at a
time, where the list is checked and the
problems identified and documented before
the next check is run. DO NOT RUN the
complete do-file at once! You will get garbage
and you will not be able to figure out which
listings to work on before working on others.

• Skipping: Certain variables should only
have values if the answer to a previous filter
question appropriate. However, as the
skipping functions have been inserted in
the original xls files, we will only double
check module filter questions in part 1 as
they would have the largest impact (see
priority skipping checks below). Make sure
that the original xls files contains all the
necessary skipping functions, if that is not
the case or if you want to add skipping
checks, here is an example:

• Let’s assume that if the filter question has a
value of 1, there should be data in the
subordinate questions and that if the filter
question does not have a value of 1, there
should be no data in the subordinate questions.
We can then check if the skipping worked
correctly with the following command (which
can be adapted to match other skipping cases):
foreach var of varlist consent {
gen s`var'=.
replace s`var'=1 if `var'==1
replace s`var'=0 if s`var'!=1
list `var' if s`var'==0
}

Consistency Checks for Part 1

What? How? (STATA syntax)
Checks in wide
• We repeat several of the commands (e.g. forval) below on string variables with almost the same

name (e.g. b1_name_1 to b1_name_11). We include as many numbers of the variable as there are
string variables, e.g. if b1_name_12 is a numeric variable because there are only missing values
(i.e. no household had 12 members), we cannot include it in the command as it would lead to a
type mismatch.

• The checks in this section are only possible in the wide format of part 1, however, you should also
add all the checks of the long formats of part 1 (see below) to the do-file for the wide format so
that you can check independently. The syntax will have to be adapted accordingly.

• Priority skipping
check module A:
Check that there

• list new_identifier if hh_people_nb==0

Appendix 2: Data Cleaning Guidelines Patrick Illien

 10

are household
members

• Priority skipping
check module B

• list new_identifier if wage_employment!=1 & wage_employ!=""

• Priority skipping
check module C

• list new_identifier if cd2_labour_exchange!=1 & howmany_exchange!=""

• Priority skipping
check module Da

• list new_identifier if cd1_agr_production!=1 & cd1_how_many!=""

• Priority skipping
check module Db

• list new_identifier if cd1_agr_production!=1 & cb1_crop!=.

• No priority skipping check for module Dc necessary
• No priority skipping check for module De necessary
• Priority skipping

check module E
• list new_identifier if cc5!=1 & activities_hired_work!=""

• Priority skipping
check module F

• list new_identifier if da1_ownland!=1 & daa_plots!=.
list new_identifier if da1_ownland!=1 & da9_landcoop!=.
list new_identifier if da4_rent_to!=1 & da4_rent_plot!=.
list new_identifier if da5_otherland!=1 & da5_owner_other!=.

• No priority skipping check for module G necessary
• No priority skipping check for module Z necessary
• Check household

type with gender
of head

• forval i=1/45 {
list new_identifier if (b02_hh_member_gender_`i'==2 &
b03_hhrelationship_`i'==1 & a7_hhtype==3) |
(b02_hh_member_gender_`i'==1 & b03_hhrelationship_`i'==1 &
a7_hhtype==2)
}

• Check that each
paid working
household
member is older
than 14 years old

• forval i=1/11 {
forval j=1/4 {
list b1_name_`i' if b1_name_`i'==name_display_`j' &
name_display_`j'!="" & b04_hh_member_age_`i'<14
}
}

• Check if any
numeric variables
are negative

• If any other
variables other
than GPS location
have negative
values, mark them

• preserve
drop gpslatitude
ds, has(type numeric)
foreach var of varlist `r(varlist)' {
list `var' if `var'<0
}
restore

• Check that each
unpaid working
household
member is older
than 14 years old

• forval i=1/11 {
forval j=1/2 {
list b1_name_`i' if b1_name_`i'==name_display2_`j' &
name_display2_`j'!="" & b04_hh_member_age_`i'<14
}
}

• List all the
production units
other than “kg”:
first check that
everything that
should be “kg” is

• ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if strmatch("`var'","*prod_unit*")==1 & `var'!="" & `var'!="kg"
}

Appendix 2: Data Cleaning Guidelines Patrick Illien

 11

spelled correctly,
you then might
have to convert the
rest using a locally
appropriate
conversion factor
or deal with them
in some other way
in the analysis.

• Show all the area
units that are not
pre-coded. You
might have to
convert them
using a locally
appropriate
conversion factor
or deal with them
in some other way
in the analysis.

• ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if strmatch("`var'","*unit_other*")==1 & `var'!=""
}

• Check that if
others were
selected, that they
are the same
activities for
across module E

• preserve
forval i=1/3 {
forval j=1/5 {
tostring cc2_2_activity_hired`i'_`j', replace
replace cc2_2_activity_hired`i'_`j'="" if cc2_2_activity_hired`i'_`j'=="."
gen test_`i'`j'=1 if activities_hired_work`i'==activities_most_work`i' &
activities_hired_work`i'==cc2_2_activity_hired`i'_`j'
list activities_hired_work`i' activities_most_work`i'
cc2_2_activity_hired`i'_`j' if test_`i'`j'!=1
}
}
restore

• If there are child-
headed
households verify
the age

forval i=1/45 {
list b1_name_`i' if b03_hhrelationship_`i'==1 & a7_hhtype==4 &
b04_hh_member_age_`i'>18 | b03_hhrelationship_`i'==1 & a7_hhtype==4
& b04_hh_member_age_`i'<10 | b03_hhrelationship_`i'==1 &
a7_hhtype==5 & b04_hh_member_age_`i'>18 | b03_hhrelationship_`i'==1
& a7_hhtype==5 & b04_hh_member_age_`i'<10
}

• Check that the
household size is
equal to the
maximum of
household
members

• preserve
forval i=1/45 {
tostring b1_name_`i', replace
gen count_`i'=1 if b1_name_`i'!="" & b1_name_`i'!="."
}
egen total=rowtotal(count_1-count_45)
list new_identifier if hh_people_nb!=total & hh_people_nb!=.
restore

• Check gender of
primary
respondent with
gender in
household list

• forval i=1/11 {
list new_identifier if a2_nameprim==b1_name_`i' & a2_nameprim!="" &
a8_gender!=b02_hh_member_gender_`i'
}

• Check that
primary

• forval i=1/11 {

Appendix 2: Data Cleaning Guidelines Patrick Illien

 12

respondent is over
18 years old

list new_identifier if a2_nameprim==b1_name_`i' & a2_nameprim!="" &
b04_hh_member_age_`i'<18
}

• Check that the
primary
respondent is a
household
member (mistakes
could be due to
spelling error!)

• list new_identifier if a2_nameprim!=b1_name_1 &
a2_nameprim!=b1_name_2 & a2_nameprim!=b1_name_3 &
a2_nameprim!=b1_name_4 & a2_nameprim!=b1_name_5 &
a2_nameprim!=b1_name_6 & a2_nameprim!=b1_name_7 &
a2_nameprim!=b1_name_8 & a2_nameprim!=b1_name_9 &
a2_nameprim!=b1_name_10 & a2_nameprim!=b1_name_11

Checks in long _final
• Households should

only have been
replaced if nobody
was available in
the household

• list new_identifier if avail!=1 & replacement_id==.
list new_identifier if avail==1 & replacement_id!=.

• Check that only
one id was given
per household

• list new_identifier if code_id!=. & replacement_id!=.
• Alternative ways of checking that could be employed throughout:

assert code_id!=. if replacement_id!=.
• Or: count if code_id!=. & replacement_id!=.

• Check if consent
was given

• If the consent is
missing but
questions were
answered, keep the
household. If the
consent was no or
if almost no
questions have
been answered,
delete the
household

• list consent if consent!=1

• Check that there
are no duplicates
of primary
respondents

• If there are
duplicates you
might check if they
are from different
households after
unique identifiers
have been
developed (see
below)

• duplicates list a2_nameprim if a2_nameprim !=""

• Check gender of
primary
respondent with
status

• list a2_nameprim if (a8_gender==2 & status==5) | (a8_gender==1 &
status==4)

• Check household
type with primary
respondent

• list a2_nameprim if (a8_gender==2 & status==1 & a7_hhtype==3) |
(a8_gender==2 & status==1 & a7_hhtype==4) | (a8_gender==1 &

Appendix 2: Data Cleaning Guidelines Patrick Illien

 13

status==1 & a7_hhtype==2) | (a8_gender==1 & status==1 &
a7_hhtype==4)

• Check that all
households have at
least 1 member

• list new_identifier if hh_people_nb<=0

• Check that years
are formatted
correctly

• foreach var of varlist da2g_surfaceprod da5_aquires1{
list `var' if (`var'!=. & `var'<1900) | (`var'!=. & `var'>2018)
}

• Check that
percentages are
correct

• list df9_interest if df9_interest!=. & df9_interest>100 & df9_interest<0

Checks in long _final-consent_given-repeat_hh
• Check for

duplicate
household
members

• duplicates list b1_name if b1_name!=""

• Check age
difference between
oldest child and
head

• by new_identifier, sort: egen head_age=min(b04_hh_member_age) if
b03_hhrelationship==1
by new_identifier, sort: egen oldest_child=max(b04_hh_member_age) if
b03_hhrelationship==3
by new_identifier, sort: egen min_head_age=min(head_age)
by new_identifier, sort: egen max_oldest_child=max(oldest_child)
by new_identifier, sort: gen difference=min_head_age-max_oldest_child
list difference b1_name new_identifier if difference < 15

• Check age of head • list b1_name if b04_hh_member_age<18 & b03_hhrelationship==1
• Check age of

spouse
• list b1_name if b04_hh_member_age<18 & b03_hhrelationship==2

• Check age and
marital status

• list b1_name if b6_marstat!=1 & b6_marstat!=.a & b6_marstat!=.b &
b6_marstat!=. & b04_hh_member_age<18

• Check age and
education status

• list b1_name if b04_hh_member_age<10 & b8_education>16 &
b8_education!=96 & b8_education!=.

Checks in long _final-consent_given-repeat_wage_employment
• No consisteny checks specific to this dataset
Checks in long _final-repeat_multiplicity
• Check that there

are no more than
31 working days
per month

• list bb7_work_day_permonth if bb7_work_day_permonth>31 &
bb7_work_day_permonth!=.

• Check that there
are no more than
24 working hours
per day

• list bb8_work_hours_perday if bb8_work_hours_perday>24 &
bb8_work_hours_perday!=.

Checks in long _final-consent_given-repeat_cd
• Check that there

are no more than
365 working days
per year

• list cd6_work_days if cd6_work_days>365 & cd6_work_days!=.

• Check that there
are no more than
24 working hours
per day

• list cd7_hours if cd7_hours>24 & cd7_hours!=.

Checks in long _final-consent_given-repeat_agrprod

Appendix 2: Data Cleaning Guidelines Patrick Illien

 14

• No consisteny checks specific to this dataset
Checks in long _final-consent_given-hired_labour-repeat_cc5
• Check that there

are no more than
365 working days
per year

• foreach var of varlist hire_onetime m1_b m1_d m1_f m1_h m1_j m1_l {
list `var' if `var'>365 & `var'!=.
}

Checks in long _final-consent_given-repeat_cc2
• Check that there

are no more than
365 working days
per year

• foreach var of varlist cc4_work_day cc14_number {
list `var' if `var'>365 & `var'!=.
}

Consistency Checks for Part 2

What? How? (STATA syntax)
Checks in wide & long _final
• Check if any numeric

variables are negative
• If any other variables have

negative values, mark them

• ds, has(type numeric)
local varlist `r(varlist)'
local toexclude r1_1 r1_2 r1_3 r1_4 r1_5 r1_6 gpslatitude
local varlist: list varlist - toexclude
foreach var of local varlist {
list `var' if `var'<0
}

• Check if the person was
available

• list avail if avail!=1

• Check if consent was given
• If the consent is missing

but questions were
answered, keep the
household. If the consent
was no or if almost no
questions have been
answered, delete the
household

• list consent if consent!=1

• Check that there are no
duplicates of respondents

• If there are duplicates you
might check if they are
from different households
after unique identifiers
have been developed (see
below)

• duplicates list a3_primary if a3_primary !=""

• Check household type with
respondent

• list a3_primary if (a3b_gender==2 & a3c_relationship ==1 &
a4_hhtype==3) | (a3b_gender==2 & a3c_relationship ==1 &
a4_hhtype==4) | (a3b_gender==1 & a3c_relationship ==1 &
a4_hhtype==2) | (a3b_gender==1 & a3c_relationship ==1 &
a4_hhtype==5)

Appendix 2: Data Cleaning Guidelines Patrick Illien

 15

• If there are child-headed
households verify the age

• list a3_primary if a4_hhtype==4 & a3b_age>18 | a4_hhtype==4 &
a3b_age<10 | a4_hhtype==5 & a3b_age>18 | a4_hhtype==5 &
a3b_age<10

• Check age of head • list a3_primary if a3b_age<18 & a3c_relationship==1
• Check age of spouse • list a3_primary if a3b_age<18 & a3c_relationship==2
• Check if any houshold head

or spouse was replaced
• list a3_primary a3c_relationship a3b_age if a3c_relationship!=1

& a3c_relationship!=2 & a3c_relationship!=.
• Check crop and coffee

questions
• foreach var of varlist i03_inputplot i04_tecno i05_fert i06_labor

i07_harvest i08_selling i08_seed i08_income {
list `var' if i01_crop1_1!=1 & i01_crop1_2!=1 & i01_crop1_3!=1 &
i01_crop1_4!=1 & i01_crop1_5!=1 & `var'!=.
}

• Check finances and
household type

• list new_identifier if a4_hhtype!=1 & i11_finance1!=.

• Check ownership and
household type

• foreach var of varlist i1_houseownership i2_hhgoods
i3_productiveassets i4_livestock i6_whobuys_agr
i8_whobuysmajor i9_whobuyspurchases {
list `var' if (a4_hhtype!=1 & `var'==3) | (a4_hhtype!=1 &
`var'==5)
}

• There is a large number of possible time-use inconsistencies depending on the context and they
cannot be checked here. Random checks have been effected in the field which must suffice. The
rest is up to the analyst.

• Check that there are no
more than 365 days per
year

• list excessive_hours if excessive_hours>365 & excessive_hours!=.

The data verification will continue into the actual analysis. Some problems cannot be identified until
analysis has begun.

Dealing with Missing Data
• Don’t delete missing data, however, you cannot simply ignore missing values in your dataset

either.
• In general, do not assume missing observations to mean 0 (for example, most “how many”

questions only allowed an integer as answer so no answer might mean 0 but it is also possible that
the person didn’t know the answer but there was no choice for DK) unless this is heavily suggested
by answers to previous questions or other variable within the housheold.

• Analysts should report how many observations are missing and inform the reader how missing
data was handled.

What? How? (STATA syntax)
• Do not drop observations that have missing

values or impute the missing values based
on other observations! You should always
tell your algorithm that a value was missing
because missingness is informative.

• Stata automatically assigns a “.” for missigness
to each missing numeric value upon import
and a “” (blank) for missingness for each string
value.

• In addition to the default “.”, which is called the
"system missing value" or sysmiss, Stata has 26
other numeric missing values: “.a”, “.b”, “.c”, ...,
“.z”, which are called the "extended missing

Appendix 2: Data Cleaning Guidelines Patrick Illien

 16

values". This helps us to assign different
reasons for missingness, such as NA (.a) or DK
(.b), see below.

• Skipped questions: If certain questions did
not appear in the question path, mark them
as missing values.

• Stata automatically assigns a “.” for answers in
relations to questions that have been skipped.

• We do not distinguish here if a missing answer has been skipped or was left out despite the question
having appeared. However, if needed, the analyst can always go back and test for each case if a
variable was skipped or is missing despite the question having appeared. This might be the case if
there is a very large number of missing values. The analyst can use descriptive statistics to see how
many are missing and should look for meaning in non-random missing values. Maybe the
respondents are indicating something important by not answering one of the questions or maybe
an enumerator consistently left out questions despite them having appeared. There is a variety of
statistical methods available for handling missing data. It is up to the analyst to use, document and
justify the most appropriate one for his/her case.

Dealing with Outliers
• It always helps to use descriptive statistics to get to know your data better and to check for

problems and potential outliers. Here are some useful commands in that regard: codebook,
describe, summarize, list, tabstat, tabulate (helpful explanations are provided in IFPRI, 2018).
Plotting numeric variables might also be particularly helpful in identifying outliers.

• However, don’t change any answers! Leave all outliers in the dataset. It is up to each researcher to
deal with outliers in their variables. This is because different analysis goals require different
outlier treatments and it is up to each analyst to choose the method most appropriate for his/her
case.

• Exception: if you are very sure that an entry is wrong (e.g. because it is logically incoherent as for
example shown by a consistency check), you can change it by the correct value or make it a
missing variable, however, you MUST document this in the change log including the original value
so that it is always possible to go back if necessary.

Labelling
In order to help you with the labelling process, we first prepare a new and separate dataset (i.e. not in your
do-file) based on the choices sheet of the xls forms used in the survey. Proceed as follows:

• Copy the original xls form of part 1 used in the survey. Rename the copy to end in _replaced. Only work
in the copy from now on. Open it with Excel.

• In the choices sheet, select the entire name column (column B), go to Home/Find & Select/Replace…
under “Find what:” type “NA”, under “Replace with:” type “.a”. Click “Options >>” and make sure to tick
the box that says “Match case” and “Match entire cell contents” and then click “Replace All”.

• In the choices sheet, select the entire name column (column B), go to Home/Find & Select/Replace…
under “Find what:” type “DK”, under “Replace with:” type “.b”. Click “Options >>” and make sure to tick
the box that says “Match case” and “Match entire cell contents” and then click “Replace All”.

• Save the xls file.

• Open a new dataset in your software package. Now copy the entire 4 first columns of the choices sheet
of the xls form _replaced of part 1 used in the survey. Special paste them (selecting “Tab” as delimiter)
into the data-editor (in the edit mode) of your software package. Save that dataset under the name
“Value_labels_part1”.

• Repeat the same procedure for part 2.

Appendix 2: Data Cleaning Guidelines Patrick Illien

 17

Perform all steps in the wide formats of part 1 & 2 and then copy the relevant labels into all corresponding
long datasets of part 1 & 2.

How? (STATA syntax)

• Run the following commands in the “Value_labels_part1” dataset in order to create an answer list
with the appropriate syntax to copy and paste the value labels rather than having to type them
each time:

drop var3
replace var4=`"""' + var4 + `"""'
forvalues i=10/100 {
replace var4=regexr(var4,"`i'. ","")
}
forvalues i=1/9 {
replace var4=regexr(var4,"`i'. ","")
}
foreach var of varlist var4 {
replace `var'=stritrim(`var')
}
egen value_label = concat(var2 var4), p(" ")
save Z:\Data_Cleaning\Stata\Labels\Value_labels_part1, replace

• Export the dataset under the name “Value_labels_part1” to excel (export data to excel
spreadsheet) selecting “Save variable names to first row in Excel file” and open the excel file. You
can copy the value label list in the “value_label” column into the do-file as needed.

• Repeat the same procedure for part 2.

• The #delimit ; command is useful in do-files if you want to paste long lists (e.g. of variable names
or value labels) from excel and you only have them in column. Stata will read everything before a
semi-colon as one line and you don’t have to type all the names in one row.

• However, once we change the line delimiter to semicolon, all lines, even short ones, must end in
semicolons. Stata treats carriage returns as no different from blanks. We can change the delimiter
back to carriage return by typing #delimit cr.

• Attach value labels to your variables in the following way, using var1 (list name) of
“Value_labels_part1/2” as the name for the value labels :

#delimit;
label define gender
1 "Male"
2 "Female";
foreach var of varlist a8_gender a14_genderenumerator {;
label val `var' gender;
};

• The loop attaches the same label to multiple variables and can be expanded as needed.
• Use the survey question in the “label” column of the “survey” sheet of the original xls file to label

the variables and label variable. You can also use a loop for multiple-choice dummies or variables
in repeat sections of the wide format.

• SurveyCTO also created a Stata_do_template. While we cannot use that directly for our data
cleaning here, you can copy and paste parts of the labelling section so that you don’t have to copy
each survey question from the original xls file.

• You might have to include syntax so that only numeric variables are labelled (otherwise, if string
variables are included in the loop, e.g. because another variable with _other attached is included,
you will encounter an error message).

 ds, has(type string)
local strings `r(varlist)
#delimit;

Appendix 2: Data Cleaning Guidelines Patrick Illien

 18

 label define read
 1 "Cannot read and cannot write"
 2 "Can write only"
 3 "Can read only"
 4 "Can read and write "
 96 "Other, specify"
 .a "NA"
 .b "DK";
 #delimit cr
 foreach rgvar of varlist b9_read_* {
 label variable `rgvar' "Can \${b1_name} read and write?"
 }
 unab want: b9_read_*
 local numerics : list want - strings

 label values `numerics' read

• Multiple-choice variables are read as strings by Stata, however, string variables cannot be labelled
in Stata. Fortunately, SurveyCTO automatically split all the select_multiple answers into
additional dummy variables (both in the long and wide csv formats). Dummy variables have been
created for each choice in the choice list, regardless if that choice was ever chosen or not, and
whether that question was ever asked or not. You don’t have to do anything else with multiple-
choice variables other than labelling them. It is up to the analyst to decide how to deal with
multiple-choice questions.

• Since multiple-choice variables have been split, you have to define a value label for each split
variable and attach that value label to the correct split variable. Make sure that the value label
always has the number 1 in front of it as a dummy variable by definition is only 1 or 0 (or missing).
You might have to include syntax so that only numeric variables are labelled (otherwise, if string
variables are included in the loop, e.g. the original multiple-choice variable, you will encounter an
error message).

foreach rgvar of varlist cd4_return_* {
label variable `rgvar' "Does \${name_display2} receive anything in return from this
employer?"
}

 label define return_1 1 "No return"
 label define return_2 1 "Cash"
 label define return_3 1 "Goods"
 label define return_4 1 "Labour"
 label define return_5 1 "Food or drink"
 label define return_96 1 "Other, specify"

 forval i=1/5 {
 foreach var of varlist cd4_return_`i'_* {
 capture confirm numeric variable `var'
 if !_rc {
 label values `var' return_`i'
 }
 }
 }

 foreach var of varlist cd4_return_96_* {
 capture confirm numeric variable `var'
 if !_rc {
 label values `var' return_96
 }
 }

• Save everything you have done up to
now under the name clean_final

• For example:
save Wide_format_22.10/FATE_Rwanda_Part

Appendix 2: Data Cleaning Guidelines Patrick Illien

 19

_1_221018_final_WIDE_clean_final, replace

Anonymising Data
• Steps to be performed in each dataset indicated below.
• Once you have finised the data cleaning process, a uniquer identifier has been created for each

household and you have made sure that it has been correctly added to each dataset, you can delete all
the individual names and other identifying information from the dataset. Be aware that they are
spread all over the datasets due to repeat functions. Proceed in the following way in order to find them:

What? How? (STATA syntax)
• Randomise the village and

enumerator codes
• Part 1 & 2, wide and long_final: Run do-files provided by the

project
• Make sure to use the

correct file
• Part 1 & 2, wide and long_final:

use Wide_format_22.10/
FATE_Rwanda_Part_1_221018_final_WIDE_clean_final_villa
ge_enu, clear

• Find all the variables
containing individual
names by identifying all
the variables with the
word “name” in variable
name (those are the ones
containing people’s
names)

• Part 1 & 2, all wide and long formats:
• lookfor name
• Or:

ds, has(type string)
foreach var of varlist `r(varlist)' {
list `var' if strmatch("`var'","*name*")==1 & `var'!=""
}

• Now drop all of those
variables

• Part 1 & 2, all wide and long formats:
drop *name*

• Drop other variables
containing identifying
information and drop old
code_ids as they add
confusion (adjust
relevant variable names
according to dataset).
Also drop variable avail
as unavailable
households have been
deleted and the variable
does not have meaning
anymore.

• Part 1, wide and long_final:
drop avail submissiondate code_id today_date starttime
end_time *gps* instanceid key setofrepeat*

• Part 2, wide and long_final:
drop avail submissiondate code_id a12_starttime
a13_datesecondvisit a3_primary end_time *gps* instanceid
key

• Drop automatically
created variables with
label
"reserved_name_for_field
_list_labels"

• Part 2, wide and long_final:
lookfor reserved_name_for_field_list_labels
foreach var of varlist `r(varlist)' {
drop `var'
}

• List all the string
variables in order to
check that no sensitive
information remains
(especially in the “other”
answers), else you might
have to anonymise
manually.

• Part 1 & 2, all wide and long formats:
ds, has(type string)
foreach var of varlist `r(varlist)' {
count if strmatch(`var',"* *")==1 & regexm(`var',"[a-zA-Z]")==0
| strmatch(`var',"* *")==1 & regexm(`var',"\.a")==1 |
strmatch(`var',"* *")==1 & regexm(`var',"\.b")==1
if r(N)==0 {
list `var' if `var'!="" & `var'!="kg"

Appendix 2: Data Cleaning Guidelines Patrick Illien

 20

}
}

• List all the value labels to
check that they contain
no sensitive information
(such as the village name
which has already been
replaced above), else you
might have to anonymise
manually.

• Part 1 & 2, all wide and long formats:
label list

• Sort the table by the new
identifiers and make sure
that there are no
duplicates in part 1 and
no more than 1 duplicate
in part 2

• Part 1 & 2, all wide and long_finals:
sort new_identifier
duplicates report new_identifier

• Save everything you have
done up to now under the
name
clean_final_anonymised

• For example:
save
Wide_format_22.10/FATE_Rwanda_Part_1_221018_final_WI
DE_clean_final_anonymised, replace

Backup
• Make sure to backup your cleaned datasets properly.
• Related information files (do-files for data cleaning, coding books, etc.) should be included together

with the backups. Copies in cloud systems without adequate security (i.e. dropbox, google drive)
should be avoided.

• Make sure you still have the encrypted raw-data files and discuss with your supervisor if they should
be deleted after the analysis is finished.

	Introduction
	Copying Dataset
	Documenting Changes and Getting Started
	Deleting Cases
	Tidying Dataset
	Checking and Correcting Identifiers
	Adding new Identifiers
	Consistency Checks
	Consistency Checks for Part 1
	Consistency Checks for Part 2

	Dealing with Missing Data
	Dealing with Outliers
	Labelling
	Anonymising Data
	Backup

